Wolfgang Kießling
Prof. Dr. Wolfgang Kießling
-
Nutzung der Vergangenheit zur Vorhersage künftiger Veränderungen
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Nutzung langfristiger Daten zur Planktonvielfalt zur Entwicklung eines Rahmens für die Bewertung und den Schutz der biologischen Vielfalt in Gebieten außerhalb der nationalen Gerichtsbarkeit
Laufzeit: 1. September 2024 - 31. August 2027
Mittelgeber: BMBF / Verbundprojekt -
Drivers and consequences of novel marine ecological communities
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Januar 2021 - 31. Dezember 2023
Mittelgeber: Ausländische Drittmittelgeber (keine EU-Mittel) -
TERSANE - Koordinationsfonds
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Dezember 2019 - 30. November 2022
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL: https://cnidaria.nat.uni-erlangen.de/wp/Das TERSANE-Projekt ist darauf ausgerichtet, dieAuswirkungen von Klimawandel in der Erdgeschichte auf Organismen und Ökosystemezu untersuchen und Zusammenhänge zwischen diesen aufzudecken. Ziel desProjektes ist es, dieses Wissen auf den anthropogenen Klimawandel anzuwenden. Unsereübergreifende Hypothese ist, dass Klimawandel-induzierte Stressoren (KIS) inder Vergangenheit mehrfach biologische Krisen für marine Organismen ausgelöst habenund diese auch Ursache für zukünftige ökologische Krisen sein werden. Während inder ersten Phase des TERSANE-Projekts viele wichtige Erkenntnisse gewonnen werdenkonnten, erfordern neue Fragen und Methoden eine Fortführung des Projekts(TERSANE 2.0).
Eigene Vorarbeiten und Fortschritte andererArbeitsgruppen erfordern die Fokussierung auf folgende Themen: Räumliche Verbreitungsmuster, biogeochemische Kreisläufe, Verständnisvon zugrundeliegenden Mechanismen und Modellierungen.
TERSANE 2.0 wird aus neun Projekten bestehen, die auf den folgenden drei Säulenbasieren:
(1) Identifizierung der KIS an der Perm-TriasGrenze
(2) Räumliche Verbreitungsmuster derAuswirkungen von KIS
(3) Überbrückungvon räumlichen und zeitlichen Skalen
Säule 1 soll auf der Basis von geochemischen Indikatoren und Modellierungenvon Erdkreisläufen die exakten Umweltveränderung im Zuge des größten hyperthermalenEreignissen und Massenaussterbens des Phanerozoikums aufdecken. Die einzelnen Projekte umfassen Nähr- undKohlenstoffkreisläufe, kontinentale Erosionsprozesse und die Intensität vonProzessen, die anoxische Ereignisse auslösen. Temperatur, CO2, sowiepH wurden bereits in Phase 1 des Projektes behandelt.
Säule 2 untersucht die räumlichen Verbreitungsmuster der KIS auf der Basisvon Zeitreihen. Um den Einfluss der KIS aufzudecken, werden paläobiologischeMethoden und Modelle angewandt. Das Hauptaugenmerk der Projekte liegt auf Temperaturschwankungenund deren Einfluss auf Verbreitungsmuster und Aussterben mariner Arten. Inenger Zusammenarbeit mit Säule 1 wird auch auf biotische Muster an derPerm-Trias Grenze fokussiert.
Säule 3 soll die Auswirkungen von KIS auf mehreren Raum-Zeit Skalen untersuchen.Wir vermuten, dass physiologische Daten den mechanistischen Schlüssel zurAuswirkung von KIS auf mehreren Zeitskalen liefern. Entsprechend werden indieser Säule physiologische Experimente, Körpergrößendynamiken und das Zusammenspiel von Lebewesen undÖkosystemen untersucht. Die drei Projekte dieser Kerngruppe werden in engerZusammenarbeit mit den anderen Kerngruppen durchgeführt.
-
Strengthening Paleontology: The German seed for global cooperation
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2019 - 30. September 2026
Mittelgeber: Volkswagen Stiftung -
CoralTrace – A new approach to understanding climate-induced reef crises
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Laufzeit: 1. Oktober 2019 - 30. September 2022
Mittelgeber: DFG / Forschungsgruppe (FOR)Coral reefs are perhaps the most threatened marine ecosystems from current climate-related stressors (CRS). The modern reef crisis manifests itself in an increased frequency of mass-bleaching, reduced calcification rates of corals, and elevated coral mortalities. Although extinction risk is also high among reef-building corals, reef decline is driven by reduced net calcium carbonate production of existing species, rather than extirpation or extinction. Nevertheless, extinctions are a major concern, because these are irreversible and thus preventing the recovery of reefs from CRS-driven crises.Using the Paleobiology Database and the Erlangen PaleoReefs Database together with a new fossil trait database on extinct reef builders, this project aims to reveal the interplay of individualistic evolutionary fate and whole ecosystem changes in reefs over time. Specifically, we test three main hypotheses: (1) Reefs are more sensitive to CRS than reef building species. A global reef crisis can occur without mass extinction, simply because the net calcium carbonate production is reduced. An important implication of this hypothesis is that reef crisis may be an early warning sign of a forthcoming biodiversity crisis. (2) Both the reef-building capacity and the extinction risk of reef building taxa can be predicted from their traits. Although not all potentially relevant life-history traits can be derived from fossils (e.g., nature of photosymbionts), preservable traits such as growth morphology and habitat breadth have been shown to be correlated with coral extinction risk and reef growth today. (3) Mesophotic and mid-latitude environments are suitable environments for reefal refugia and recovery after climate induced crises.Hypothesis testing will be performed in a multivariate statistical framework and machine learning focussing on preserved reefal volume and extinction as dependent variables. Independent variables such as magnitude and duration of warming, anoxia and acidification will be taken from published sources and accompanying TERSANE projects. Tests will be conducted at the level of specific time slices (end-Permian, end-Triassic, early Jurassic) as well as in a time-series context. To be feasible and relevant to TERSANE’s goals, CoralTrace will focus on Permian to Neogene reef systems.
-
CoralTrace - Ein neuer Ansatz zum Verständnis klimainduzierter Riffkrisen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2019 - 30. September 2022
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Coral reefs are perhaps the most threatenedmarine ecosystems from current climate-related stressors (CRS). The modern reefcrisis manifests itself in an increased frequency of mass-bleaching, reducedcalcification rates of corals, and elevated coral mortalities. Althoughextinction risk is also high among reef-building corals, reef decline is drivenby reduced net calcium carbonate production of existing species, rather than extirpationor extinction. Nevertheless, extinctions are a major concern, because these areirreversible and thus preventing the recovery of reefs from CRS-driven crises.
Using the Paleobiology Database and theErlangen PaleoReefs Database together with a new fossil trait database onextinct reef builders, this project aims to reveal the interplay ofindividualistic evolutionary fate and whole ecosystem changes in reefs overtime. Specifically, we test three main hypotheses: (1) Reefs are more sensitiveto CRS than reef building species. A global reef crisis can occur without massextinction, simply because the net calcium carbonate production is reduced. Animportant implication of this hypothesis is that reef crisis may be an earlywarning sign of a forthcoming biodiversity crisis. (2) Both the reef-buildingcapacity and the extinction risk of reef building taxa can be predicted fromtheir traits. Although not all potentially relevant life-history traits can bederived from fossils (e.g., nature of photosymbionts), preservable traits suchas growth morphology and habitat breadth have been shown to be correlated withcoral extinction risk and reef growth today. (3) Mesophotic and mid-latitudeenvironments are suitable environments for reefal refugia and recovery afterclimate induced crises.
Hypothesistesting will be performed in a multivariate statistical framework and machinelearning focussing on preserved reefal volume and extinction as dependentvariables. Independent variables such as magnitude and duration of warming,anoxia and acidification will be taken from published sources and accompanyingTERSANE projects. Tests will be conducted at the level of specific time slices(end-Permian, end-Triassic, early Jurassic) as well as in a time-seriescontext. To be feasibleand relevant to TERSANE’s goals, CoralTrace will focus on Permian to Neogenereef systems.
-
Temperature-induced stresses as a unifying principle in ancient extinctions (TERSANE)
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Temperature-induced stresses as a unifying principle in ancient extinctions (TISANE)
Laufzeit: 1. Juli 2016 - 31. Juli 2019
Mittelgeber: Deutsche Forschungsgemeinschaft (DFG) -
Temperature-related stresses as a unifying principle in ancient extinctions
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
Laufzeit: 1. Juli 2016 - 30. Juni 2019
Mittelgeber: DFG / Forschungsgruppe (FOR)
URL: https://www.gzn.fau.de/palaeoumwelt/projects/tersane/index.htmlCombined with local and regional anthropogenic factors, current human-induced climate warming is thought to be a major threat to biodiversity. The ecological imprint of climate change is already visible on land and in the oceans. The imprint is largely manifested in demographic/abundance changes and phenological and distribution shifts, whereas only local extinctions are yet attributable to climate change with some confidence. This is expected to change in the near future owing to direct heat stress, shortage of food, mismatches in the timing of seasonal activities, geographic barriers to migration, and new biological interactions. Additional stressors are associated with climate warming in marine systems, namely acidification and deoxygenation. Ocean acidification is caused by the ocean's absorption of CO2 and deoxygenation is a result of warmer water, increased ocean stratification and upwelling of hypoxic waters. The combination of warming, acidification and deoxygenation is known as the "deadly trio". Temperature is the most pervasive environmental factor shaping the functional characteristics and limits to life and is also central to the generation and biological effects of hypoxic waters and to modulating the effects of ocean acidification, with and without concomitant hypoxia. Due to the key role of temperature in the interaction of the three drivers we termed these temperature-related stressors (TRS). -
Biologische Konsequenzen von temperaturbedingten Stressfaktoren über mehrere Zeitskalen
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
Laufzeit: seit 1. Januar 2016
Mittelgeber: DFG / Forschungsgruppe (FOR)Die Kenntnis der physiologischen Toleranzgrenzen rezenter Arten ist eine Grundvoraussetzung für die Interpretation der Reaktion fossiler Organismen auf temperaturbedingte Stressfaktoren. Umgekehrt kann die Vorhersage der biologischen Konsequenzen des aktuellen Klimawandels von der Kenntnis fossiler Muster der Erdgeschichte profitieren. Eingebettet in die Forschergruppe TERSANE schlagen wir ein Projekt vor, das explizit neontologische und paläontologische Ansätze kombiniert und die Konsequenzen von Erwärmung, Ozeanversauerung und Sauerstoffarmut auf marines Leben zu beurteilen. Unser Projekt fokussiert auf die Kompilation und Analyse von großen Datensätzen und hat drei wesentliche Komponenten: (1) Eine Meta-Analyse von (a) heutigen Organismen wird experimentelle und Beobachtungsdaten zur Reaktionen und Toleranzgrenzen von marinen Organismen auswerten und die Empfindlichkeit höherer, fossil überlieferter Taxa in Bezug auf Erwärmung, Ozeanversauerung und Sauerstoffknappheit in ihrer Synergie zu quantifizieren, während (b) eine Meta-Analyse fossiler Daten auf die Beurteilung des Liliput-Effekts abzielt, der plakativ die Verkleinerung von Körpergrößen im Gefolge von Massenaussterben umschreibt und manchmal auf temperaturbedingte Stressfaktoren zurückgeführt wird. (2) Die Analyse von Primärdaten aus dem Fossilbericht dient der Evaluation der physiologischen und biogeographischen Selektivität der end-Permischen und unterjurassischen Aussterbeereignisse um zu testen, ob die physiologischen Prinzipien, die aus heutigen Beobachtungen abgeleitet wurden, skalenunabhängig auch auf Aussterberisiken bei extremem Klimawandel angewandt werden können. (3) Die Beurteilung fossiler Raten von Umweltveränderungen ist wichtig, um zu testen, ob die damaligen Raten tatsächlich viel geringer waren als zum Beispiel in den letzten 50 Jahren gemessen wurde. Alternativ sind die geringeren Raten aus der geologischen Überlieferung nur eine statistisches Artefakt aus den verschiedenen Beobachtungszeitskalen. Eine skalenbereinigte Ratenanalyse wird helfen, die Daten aus der erdgeschichtlichen Vergangenheit besser für die heutige Ökologie des globalen Wandels verwertbar zu machen. Diese drei Komponenten werden schließlich integriert um die Gemeinsamkeit der Muster und öko-physiologischen Selektivität von Artensterben zu beurteilen, wie sie sich heute und im Fossilbericht abzeichnen.
-
FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
(Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
Laufzeit: seit 1. Januar 2016
Mittelgeber: DFG / Forschungsgruppe (FOR)Anthropogenic global warming is regarded as a major threat to species and ecosystems worldwide. Predicting the biological impacts of future warming is thus of critical importance. The geological record provides several examples of mass extinctions and global ecosystem pertubations in which temperature-related stresses are thought to have played a substantial role. These catastrophic natural events are potential analogues for the consequences of anthropogenic warming but the Earth system processes during these times are still unexplored, especially in terms of their ultimate trigger and the extinction mechanisms. The Research Unit TERSANE aims at assessing the relative importance of warming-related stresses in ancient mass extinctions and at evaluating how these stresses emerged under non-anthropogenic conditions. An interdisciplinary set of projects will combine high-resolution geological field studies with meta-analyses and sophisticated analysis of fossil occurrence data on ancient (suspect) hyperthermal events to reveal the rate and magnitude of warming, their potential causes, their impact on marine life, and the mechanisms which led to ecologic change and extinction. Geochemistry, analytical paleobiology and physiology comprise our main toolkit, supplemented by biostratigraphy, sedimentology, and modelling.
-
Evolution der tropischen marinen Biodiversität: vergleichende Analyse der triassischen Fauna der Cassian Formation mit modernen Faunen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Mai 2015
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Die triassische Cassian Formation birgt eine außerordentlich diverse marine tropische Invertebratenfauna, die ein weitgehend unverzerrtes Bild der Diversität und Komplexität frühmesozoischer ökosysteme bietet. Die Fauna setzt sich aus etlichen Assoziationen von verschiedenen Lokalitäten mit unterschiedlichen Paläoumweltbedingungen zusammen, die bezüglich Diversität und Artenspektrum erheblich variieren. Die Erhaltung der Fossilien ist gewöhnlich sehr gut einschließlich Aragoniterhaltung und einer reichen Fauna kleinwüchsiger Arten. Basierend auf umfangreichen Proben, die auf standardisierte Weise entnommen und aufgeschlossen werden, wollen wir die Diversität dieser Proben möglichst vollständig erfassen. Neben der Diversität der einzelnen Proben (Alphadiversität) werden wir die Diversitäten zwischen den Proben ermitteln (Betadiversität). Somit erfassen wir Komplexität, taxonomische Struktur und Größenverteilungen der Organismen eines frühmesozoischen tropischen marinen ökosystems. Vergleiche mit Vergesellschaftungen aus rezenten und quartären tropischen Habitaten werden Schlussfolgerungen über den biologischen Wandel tropischer ökosysteme seit mehr als 200 Millionen Jahren ermöglichen. Vergleiche mit bereits existierenden Daten über fossile, diagenetisch stärker verzerrte (`normale´) marine Faunen ermöglichen eine Abschätzung, wie taphonomische Prozesse sich auf die überlieferte Diversität, Größenverteilung und ökologische Struktur auswirken. Viele der Invertebratengruppen, die in rezenten tropischen marinen ökosystemen hochdivers sind (z. B. heterodonte Muscheln und Neogastropoden) radiierten nicht vor der Kreide. Wir wollen prüfen, ob ähnlich diverse Gruppen bereits in der Trias existierten oder ob sich die Diversität gleichmäßiger auf höhere Taxa verteilte. -
Biogeographische und ökologische Reaktionen von Riffkorallen auf interglaziale Erwärmungsphasen im Pleistozän
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. September 2014
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) -
Controls on global biodiversity patterns and skeletal mineralizsation during the Cambrian radiation
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: FOR 736: The Precambrian-Cambrian Biosphere Revolution: Insights from Chinese Microcontinents
Laufzeit: 1. März 2011 - 31. Oktober 2014
Mittelgeber: DFG / Forschungsgruppe (FOR)Dieses Projekt zielt darauf ab, die globale Diversitätsdynamik um die Ediacarium-Kambrium- Grenze zuverlässig zu dokumentieren und die Daten für rigoroses Testen von Hypothesen zu verwenden. Eigene Geländestudien in Kasachstan und Südchina werden durch Daten aus der Forschergruppe und publizierte Daten in der Paleobiology Database ergänzt, um einen möglichst repräsentativen Datensatz zu erhalten. Muster der Alpha-, Beta- und Gamma- Diversität werden untersucht, um die relative Rolle von Diversitätsänderungen innerhalb und zwischen Fossilgemeinschaften sowie die Bedeutung biogeographischer Muster zu verstehen. Diese Muster werden verwendet, um Hypothesen zur Ursache der kambrischen Radiation zu testen. Besonders der mögliche Zusammenhang zwischen evolutionärer Innovation auf der einen Seite und Lebensräumen auf der anderen Seite wird in dieser Hinsicht neue Erkenntnisse zur Rolle von Sauerstoff, Nährstoffen und Klimaveränderungen in der kambrischen Radiation liefern. Die Geländearbeit wird sich auf Riffstrukturen im untersten Kambrium und Makroinvertebraten konzentrieren, um Muster der Biomineralisation zu erfassen.
-
Evolutionary rates of zooxanthellate and azooxanthellate corals and their controlling factors
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Februar 2011
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Our goal is to identify the underlying causes of evolutionary rates within scleractinian corals. Scleractinians have two fundamentally different ecologies: Those that retrieve a substantial proportion of their nutrition from symbiotic algae in their tissue (zooxanthellate corals) and those that entirely depend on zooplankton for feeding Proposal Kiessling 2 (azooxanthellate corals). We will be analyzing the evolutionary consequences of these different ecological modes and correlated traits such as coloniality and environmental affinity. While photosymbiosis is clearly beneficial at the organismic level, there is a trade-off in terms of evolutionary benefit because zooxanthellate reef corals seem to be more sensitive to environmental change and tended to be affected more strongly by extinction events than other corals. Evolutionary rates are measured by a novel combination of samplingstandardized biodiversity dynamics and molecular methods. The changes in diversification, speciation, and extinction patterns will be compared with global changes in the marine environment and evolutionary changes in ecology to learn more about the circumstances favoring the spread and demise of these different corals. Thereby, we expect to improve estimates of extinction risk of modern corals.
Bücher
- Yasuhara, M., Huang, H.H.M., Reuter, M., Tian, S.Y., Cybulski, J.D., O'Dea, A.,... Hong, Y. (2022). Hotspots of cenozoic tropical marine biodiversity. CRC Press.
Beiträge in Fachzeitschriften
- Burger, M., Dimitrijevic, D., & Kießling, W. (2024). Bioerosion and encrustation in late triassic reef corals from Iran. Facies, 70(4). https://doi.org/10.1007/s10347-024-00687-w
- Dimitrijevic, D., Santodomingo, N., & Kießling, W. (2024). Reef refugia in the aftermath of past episodes of global warming. Coral Reefs, 43, 1431–1442. https://doi.org/10.1007/s00338-024-02548-y
- Dimitrijević, D., Santodomingo, N., & Kießling, W. (2024). Reef refugia in the aftermath of past episodes of global warming. Coral Reefs. https://doi.org/10.1007/s00338-024-02548-y
- Mathes, G., Reddin, C.J., Kießling, W., Antell, G., Saupe, E., & Steinbauer, M. (2024). Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13905
- Eichenseer, K., Balthasar, U., Smart, C., & Kießling, W. (2024). Temperature Effects on the Distribution of Aragonitic and Calcite-Secreting Epifaunal Bivalves. Journal of Biogeography. https://doi.org/10.1111/jbi.15036
- Foster, W.J., Asatryan, G., Rauzi, S., Botting, J.P., Buchwald, S.Z., Lazarus, D.B.,... Kießling, W. (2023). Response of Siliceous Marine Organisms to the Permian-Triassic Climate Crisis Based on New Findings From Central Spitsbergen, Svalbard. Paleoceanography and Paleoclimatology, 38(12). https://doi.org/10.1029/2023PA004766
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2023). Corallite sizes of reef corals: decoupling of evolutionary and ecological trends. Paleobiology. https://doi.org/10.1017/pab.2023.28
- Reddin, C.J., Aberhan, M., Dimitrijević, D., Dowding, E., Kocsis, Á., Mathes, G.,... Kießling, W. (2023). Oversimplification risks too much: A response to 'How predictable are mass extinction events?'. Royal Society Open Science, 10(8). https://doi.org/10.1098/rsos.230400
- Raja, N.B., Pandolfi, J.M., & Kießling, W. (2023). Modularity explains large-scale reef booms in Earth’s history. Facies, 69(3). https://doi.org/10.1007/s10347-023-00671-w
- Pörtner, H.O., Scholes, R.J., Arneth, A., Barnes, D.K., Burrows, M.T., Diamond, S.E.,... Val, A.L. (2023). Overcoming the coupled climate and biodiversity crises and their societal impacts. Science, 380(6642), eabl4881-. https://doi.org/10.1126/science.abl4881
- Kießling, W., Smith, J., & Raja, N.B. (2023). Improving the relevance of paleontology to climate change policy. Proceedings of the National Academy of Sciences of the United States of America, 120(7), e2201926119. https://doi.org/10.1073/pnas.2201926119
- Smith, J., Rillo, M.C., Kocsis, Á., Dornelas, M., Fastovich, D., Huang, H.H.M.,... Hull, P.M. (2023). BioDeepTime: A database of biodiversity time series for modern and fossil assemblages. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13735
- Hodapp, D., Roca, I.T., Fiorentino, D., Garilao, C., Kaschner, K., Kesner-Reyes, K.,... Froese, R. (2023). Climate change disrupts core habitats of marine species. Global Change Biology. https://doi.org/10.1111/gcb.16612
- Na, L., Kocsis, Á., Li, Q., & Kießling, W. (2022). Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology. https://doi.org/10.1017/pab.2022.36
- Siqueira, A.C., Kießling, W., & Bellwood, D.R. (2022). Fast-growing species shape the evolution of reef corals. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30234-6
- Gliwa, J., Wiedenbeck, M., Schobben, M., Ullmann, C., Kießling, W., Ghaderi, A.,... Korn, D. (2022). Gradual warming prior to the end-Permian mass extinction. Palaeontology, 65(5). https://doi.org/10.1111/pala.12621
- Flannery-Sutherland, J.T., Raja, N.B., Kocsis, Á., & Kießling, W. (2022). fossilbrush: An R package for automated detection and resolution of anomalies in palaeontological occurrence data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13966
- Raja Schoob, N.B., Dimitrijevic, D., Krause, M.C., & Kießling, W. (2022). Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01486-0
- Mattern, F., Scharf, A., Pracejus, B., Al Shibli, I.S.A., Al Kabani, B.M.S., Al Qasmi, W.Y.A.,... Callegari, I. (2022). Origin of the Cretaceous olistostromes in the Oman mountains (Sultanate of Oman): Evidence from clay minerals. Journal of African Earth Sciences, 191. https://doi.org/10.1016/j.jafrearsci.2022.104547
- Staples, T.L., Kießling, W., & Pandolfi, J.M. (2022). Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters. https://doi.org/10.1111/ele.14016
- Mathes, G., Kießling, W., & Steinbauer, M.J. (2021). Deep-time climate legacies affect origination rates of marine genera. Proceedings of the National Academy of Sciences of the United States of America, 118(36). https://doi.org/10.1073/pnas.2105769118
- Kocsis, Á., Reddin, C.J., Scotese, C.R., Valdes, P.J., & Kießling, W. (2021). Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288(1957). https://doi.org/10.1098/rspb.2021.1342
- Raja, N.B., Lauchstedt, A., Pandolfi, J.M., Kim, S.W., Budd, A.F., & Kießling, W. (2021). Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13321
- Raja, N.B., & Kießling, W. (2021). Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288. https://doi.org/10.1098/rspb.2021.0545
- Mathes, G., van Dijk, J., Kießling, W., & Steinbauer, M.J. (2021). Extinction risk controlled by interaction of long-term and short-term climate change. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-01377-w
- Manes, S., Costello, M.J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.A.,... Vale, M.M. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation. https://doi.org/10.1016/j.biocon.2021.109070
- Teichert, S., Steinbauer, M., & Kießling, W. (2020). A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-73900-9
- Pandolfi, J.M., Staples, T.L., & Kießling, W. (2020). Increased extinction in the emergence of novel ecological communities. Science, 370(6513), 220-222. https://doi.org/10.1126/science.abb3996
- Chen, W., Wang, Y., Huang, Y., Wang, T., Yi, Z., & Kießling, W. (2020). Reef-building red algae from an uppermost Permian reef complex as a fossil analogue of modern coralline algal ridges. Facies, 66(4). https://doi.org/10.1007/s10347-020-00606-9
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2020). Corrigendum to: Marine invertebrate migrations trace climate change over 450 million years (Global Ecology and Biogeography, (2018), 27, 6, (704-713), 10.1111/geb.12732). Global Ecology and Biogeography, 29(7), 1280-1282. https://doi.org/10.1111/geb.13114
- Yasuhara, M., Wei, C.L., Kucera, M., Costello, M.J., Tittensor, D.P., Kießling, W.,... Kubota, Y. (2020). Past and future decline of tropical pelagic biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12891-12896. https://doi.org/10.1073/pnas.1916923117
- Roden, V., Zuschin, M., Nuetzel, A., Hausmann, I.M., & Kießling, W. (2020). Drivers of beta diversity in modern and ancient reef-associated soft-bottom environments. PeerJ, 8. https://doi.org/10.7717/peerj.9139
- Antell, G.S., Kießling, W., Aberhan, M., & Saupe, E.E. (2020). Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology, 30(1), 115-121.e5. https://doi.org/10.1016/j.cub.2019.10.065
- Frisone, V., Preto, N., Pisera, A., Agnini, C., Giusberti, L., Papazzoni, C.A.,... Bosellini, F.R. (2020). A first glimpse on the taphonomy and sedimentary environment of the Eocene siliceous sponges from Chiampo, Lessini Mts, NE Italy. Bollettino Della Societa Paleontologica Italiana, 59(3), 299-313. https://doi.org/10.4435/BSPI.2020.25
- Reddin, C.J., Nätscher, P., Kocsis, Á., Pörtner, H.O., & Kießling, W. (2020). Marine clade sensitivities to climate change conform across timescales. Nature Climate Change. https://doi.org/10.1038/s41558-020-0690-7
- Bosellini, F.R., Vescogni, A., Kießling, W., Zoboli, A., Di Giuseppe, D., & Papazzoni, C.A. (2020). Revisiting reef models in the Oligocene of northern Italy (Venetian Southern Alps). Bollettino Della Societa Paleontologica Italiana, 59(3), 337-348. https://doi.org/10.4435/BSPI.2020.12
- Reddin, C.J., Kocsis, Á., Aberhan, M., & Kießling, W. (2020). Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Global Change Biology. https://doi.org/10.1111/gcb.15434
- Kießling, W., Raja, N.B., Roden, V., Turvey, S.T., & Saupe, E.E. (2019). Addressing priority questions of conservation science with palaeontological data. Philosophical Transactions of the Royal Society B-Biological Sciences, 374, 20190222. https://doi.org/10.1098/rstb.2019.0222
- Roden, V., Hausmann, I.M., Nützel, A., Seuß, B., Reich, M., Urlichs, M.,... Kießling, W. (2019). Fossil liberation: a model to explain high biodiversity in the Triassic Cassian Formation. Palaeontology. https://doi.org/10.1111/pala.12441
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., Haaga, K.A., & Kießling, W. (2019). Jurassic shift from abiotic to biotic control on marine ecological success. Nature Geoscience. https://doi.org/10.1038/s41561-019-0392-9
- Kocsis, Á., Reddin, C.J., Alroy, J., & Kießling, W. (2019). The r package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13161
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2018). Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology, 1–15. https://doi.org/10.1017/pab.2018.34
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2018). Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 27(6), 704-713. https://doi.org/10.1111/geb.12732
- Kocsis, Á., Reddin, C.J., & Kießling, W. (2018). The biogeographical imprint of mass extinctions. Proceedings of the Royal Society of London, Series B: Biological Sciences, 285(1878). https://doi.org/10.1098/rspb.2018.0232
- Kießling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., & Korn, D. (2018). Pre-mass extinction decline of latest Permian ammonoids. Geology, 46(3), 283-286. https://doi.org/10.1130/G39866.1
- Petersen, M., Glöckler, F., Kießling, W., Döring, M., Fichtmüller, D., Laphakorn, L.,... Hoffmann, J. (2018). History and development of ABCDEFG: a data standard for geosciences. FOSSIL RECORD, 21(1), 47-53. https://doi.org/10.5194/fr-21-47-2018
- Vulpius, S., & Kießling, W. (2018). New constraints on the last aragonite-calcite sea transition from early Jurassic ooids. Facies, 64(1). https://doi.org/10.1007/s10347-017-0516-x
- Roden, V., Kocsis, Á., Zuschin, M., & Kießling, W. (2018). Reliable estimates of beta diversity with incomplete sampling. Ecology, 99(5), 1051-1062. https://doi.org/10.1002/ecy.2201
- Kocsis, Á., Reddin, C.J., & Kießling, W. (2018). The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography, 27(9), 1106-1120-1120. https://doi.org/10.1111/geb.12771
- Lauchstedt, A., Pandolfi, J., & Kießling, W. (2017). Towards a new paleotemperature proxy from reef coral occurrences. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-10961-3
- Li, Q., Li, Y., & Kießling, W. (2017). The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge Calathium reefs. Lethaia, 50(1), 140-148. https://doi.org/10.1111/let.12182
- Kießling, W., & Kocsis, Á. (2016). Adding fossil occupancy trajectories to the assessment of modern extinction risk. Biological Letters, 12(10). https://doi.org/10.1098/rsbl.2015.0813
- Renema, W., Pandolfi, J., & Kießling, W. (2016). Are coral reefs victims of their own past success? Science Advances, 2(4). https://doi.org/10.1126/sciadv.1500850
- Zhang, Y., Li, Q., Li, Y., Kießling, W., & Wang, J. (2016). Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors. Facies, 62, No 17 (18 pages). https://doi.org/10.1007/s10347-016-0466-8
- Molinos, J.G., Halpern, B.S., Schoeman, D.S., Brown, C.D., Kießling, W., Moore, P.J.,... Burrows, M.T. (2016). Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6, doi:10.1038/nclimate2769. https://doi.org/10.1038/nclimate2769
- Vandenbroucke, T.R., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K.,... Kießling, W. (2015). Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nature Communications, 6. https://doi.org/10.1038/ncomms8966
- Li, Q., Li, Y., & Kießling, W. (2015). Allogenic succession in Late Ordovician reefs from southeast China: a response to the Cathaysian orogeny. Estonian Journal of Earth Sciences, 64(1), 68-73. https://doi.org/10.3176/earth.2015.12
- Kießling, W., & Kocsis, Á. (2015). Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology, 41(3), 402-414. https://doi.org/10.1017/pab.2015.6
- Rillig, M.C., Kießling, W., Borsch, T., Gessler, A., Greenwood, A.D., Hofer, H.,... Jeltsch, F. (2015). Biodiversity research: data without theory – theory without data. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00020
- Bibi, F., & Kießling, W. (2015). Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10623-10628. https://doi.org/10.1073/pnas.1504538112
- Na, L., & Kießling, W. (2015). Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4702-4706. https://doi.org/10.1073/pnas.1424985112
- Kießling, W., Li, Q., Li, Y., & Wang, J. (2015). Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 425, 84-96. https://doi.org/10.1016/j.palaeo.2015.02.034
- Kießling, W. (2015). Fuzzy seas. Geology, 43(2), 191-192. https://doi.org/10.1130/focus022015.1
- Kießling, W., Kemp, D.B., & Eichenseer, K. (2015). Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications, 6(No. 8890), (6 Seiten). https://doi.org/10.1038/ncomms9890
- Kießling, W., Aberhan, M., & Kiessling, W. (2015). Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7207-7212. https://doi.org/10.1073/pnas.1422248112
- O'Connor, M., Holding, J., Kappel, C., Duarte, C.M., Brander, K., Brown, C.J.,... Richardson, A.J. (2015). Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 24(1), 64-76. https://doi.org/10.1111/geb.12218
- Li, Q., Li, Y., & Kießling, W. (2015). The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies, 61(17), 9pp.. https://doi.org/10.1007/s10347-015-0444-6
- Hopkins, M., Simpson, C., & Kießling, W. (2014). Differential niche dynamics among major marine invertebrate clades. Ecology Letters, 17(3), 314-323. https://doi.org/10.1111/ele.12232
- Li, Q., Lin, Y., & Kießling, W. (2014). Early Ordovician sponge-Calathium-microbial reefs on the Yangtze Platform margin of the South China Block. Gff, 136(1), 157-161. https://doi.org/10.1080/11035897.2013.862852
- Pandolfi, J., & Kießling, W. (2014). Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Current Opinion in Environmental Sustainability, 7, 52-58. https://doi.org/10.1016/j.cosust.2013.11.020
- Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., Buckley, L.B.,... Poloczanska, E.S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492-495. https://doi.org/10.1038/nature12976
- Kocsis, Á., Kießling, W., & Palfy, J. (2014). Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction. Paleobiology, 40(4), 625--639. https://doi.org/10.1666/14007
- Kocsis, A.T., Kießling, W., & Palfy, J. (2014). Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction. Paleobiology, 40(4), 625-639. https://doi.org/10.1666/14007
- Aberhan, M., & Kießling, W. (2014). Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction. PLoS ONE, 9(7), e102629. https://doi.org/10.1371/journal.pone.0102629
- Mewis, H., & Kießling, W. (2013). Environmentally controlled succession in a late Pleistocene coral reef (Sinai, Egypt). Coral Reefs, 32, 49-58. https://doi.org/10.1007/s00338-012-0968-y
- Kießling, W., Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S.,... Richardson, A.J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3, 919-925. https://doi.org/10.1038/nclimate1958
- Tietje, M., & Kießling, W. (2013). Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs. Journal of Biogeography, 40, 790-799. https://doi.org/10.1111/jbi.12030
- Mcgowan, A.J., & Kießling, W. (2013). Using abundance data to assess the relative role of sampling biases and evolutionary radiations in Upper Muschelkalk ammonoids. Acta Palaeontologica Polonica, 58(3), 561-572. https://doi.org/10.4202/app.2010.0040
- Richardson, A.J., Brown, C.D., Brander, K., Bruno, J.F., Buckley, L., Burrows, M.T.,... Poloczanska, E.S. (2012). Climate change and marine life. Biology Letters. https://doi.org/10.1098/rsbl.2012.0530
- Kießling, W., Simpson, C., Beck, B., Mewis, H., & Pandolfi, J.M. (2012). Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21378-21383. https://doi.org/10.1073/pnas.1214037110
- Scasso, R.A., Aberhan, M., Ruiz, L., Weidemeyer, S., Medina, F.A., & Kießling, W. (2012). Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina. Cretaceous Research, 36, 37-56. https://doi.org/10.1016/j.cretres.2012.02.002
- Königshof, P., Suttner, T.J., & Kießling, W. (2012). Klimawandel und Veränderung der Biodiversität in der Erdgeschichte. Natur, Forschung, Museum.
- Nakrem, H.A., & Kießling, W. (2012). Late Jurassic (Volgian) radiolarians from Central Spitsbergen - A preliminary study. Norwegian Journal of Geology, 92, 149-155.
- Hoenisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A.,... Williams, B. (2012). The geological record of ocean acidification. Science, 335, 1058-1063. https://doi.org/10.1126/science.1208277
- Aberhan, M., Nuernberg, S., & Kießling, W. (2012). Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology, 38(2), 187-204. https://doi.org/10.1666/10066.1
- Kießling, W. (2011). Patterns and processes of ancient reef crises. The Paleontological Society Papers, 17, 1-14.
- Simpson, C., Kießling, W., Mewis, H., Baron-Szabo, R., & Müller, J. (2011). Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution, 65(11), 3274-3284. https://doi.org/10.1111/j.1558-5646.2011.01365.x
- Kießling, W., Pandey, D., Schemm-Gregory, M., Mewis, H., & Aberhan, M. (2011). Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. Journal of African Earth Sciences, 59, 195-214. https://doi.org/10.1016/j.jafrearsci.2010.10.006
- Kießling, W., & Simpson, C. (2011). On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1), 56-67. https://doi.org/10.1111/j.1365-2486.2010.02204.x
- Burrows, M.T., Schoeman, D.S., Buckley, L.B., Moore, P., Poloczanska, E.S., Brander, K.M.,... Richardson, A.J. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334, 652-655. https://doi.org/10.1126/science.1210288
- Kießling, W., & Danelian, T. (2011). Trajectories of Late Permian Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record, 14(1), 95-101. https://doi.org/10.1002/mmng.201000017
- Kießling, W. (2010). Evolutionszentrum Korallenriff. GIT Labor-Fachzeitschrift.
- Kießling, W., & Nützel, A. (2010). German paleontology in the early 21st century. Palaeontologia Electronica.
- Kießling, W. (2010). Promoting origination. Nature Geoscience, 3, 388-389.
- Kießling, W. (2010). Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 11-19. https://doi.org/10.1016/j.palaeo.2009.03.020
- Kießling, W., Simpson, C., & Foote, M. (2010). Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science, 327, 196-198. https://doi.org/10.1126/science.1182241
- Kießling, W. (2010). Response. Science, 328(5981), 975-976. https://doi.org/10.1126/science.328.5981.975
- Kießling, W. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970), 1214-1218. https://doi.org/10.1126/science.1177265
- Kießling, W. (2010). The Devonian Nekton Revolution. Lethaia, 43, 465-477. https://doi.org/10.1111/j.1502-3931.2009.00206.x
- Simpson, C., & Kießling, W. (2010). The role of extinction in large-scale diversity-stability relationships. Proceedings of the Royal Society of London, Series B: Biological Sciences, 277, 1451-1456. https://doi.org/10.1098/rspb.2009.2062
- Kießling, W., Roniewicz, E., Villier, L., Léonide, P., & Struck, U. (2009). An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. Palaios, 24, 657-671. https://doi.org/10.2110/palo.2009.p09-030r
- Kießling, W. (2009). Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proceedings of the Royal Society of London, Series B: Biological Sciences, 276, 945-951. https://doi.org/10.1098/rspb.2008.1441
- Kießling, W. (2009). First record of coralline demosponges in the Pleistocene: implications for reef ecology. Coral Reefs, 28(4), 867-870. https://doi.org/10.1007/s00338-009-0549-x
- Kießling, W. (2009). Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology Evolution and Systematics, 40, 173-192. https://doi.org/10.1146/annurev.ecolsys.110308.120251
- Kießling, W. (2009). Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology, 35(4), 612-630. https://doi.org/10.1666/0094-8373-35.4.612
- Bucur, I.I., Kießling, W., & Scasso, R.A. (2009). Re-description and neotypification of Archamphiroa jurassica Steinmann 1930, a calcareous red alga from the Jurassic of Argentina. Journal of Paleontology, 83(6), 962-968.
- Kießling, W. (2008). Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience, 1(8), 527-530. https://doi.org/10.1038/ngeo251
- Alroy, J., Aberhan, M., Fürsich, F., Bottjer, D., Foote, M., Harries, P.,... Kießling, W. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97-100. https://doi.org/10.1126/science.1156963
- Kießling, W. (2008). Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record, 11(1), 7-18.
- Kießling, W. (2007). Entwicklung der marinen Biodiversität. Humboldt-Spektrum.
- Kießling, W., & Aberhan, M. (2007). Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic times. Paleobiology, 33(3), 414-434. https://doi.org/10.1666/06069.1
- Kießling, W., Aberhan, M., Brenneis, B., & Wagner, P. (2007). Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4), 201-222. https://doi.org/10.1016/j.palaeo.2006.06.029
- Kießling, W. (2007). Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous/Paleogene boundary sections. Geology, 35(3), 227-230. https://doi.org/10.1130/G23197A.1
- Kießling, W. (2007). Geographical distribution and extinction risk: Lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography, 34(9), 14731489. https://doi.org/10.1111/j.1365-2699.2007.01709.x
- Wagner, P., Aberhan, M., Hendy, A., & Kießling, W. (2007). The effects of taxonomic standardization on occurrence-based estimates of diversity. Proceedings of the Royal Society of London, Series B: Biological Sciences, 274, 439-444.
- Kießling, W., Scasso, R.A., Aberhan, M., Ruiz, L., & Weidemeyer, S. (2006). A Maastrichtian microbial reef and associated limestones in the Roca Formation of Patagonia. Fossil Record, 9(2), 183-197. https://doi.org/10.1002/mmng.200600007
- Kowalewski, M., Kießling, W., Aberhan, M., Fürsich, F., Scarponi, D., Barbour, S.L., & Hoffmeister, A.P. (2006). Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32, 533-561. https://doi.org/10.1666/05074.1
- Kießling, W. (2006). Life's complexity cast in stone. Science, 314, 1254-1255.
- Kießling, W. (2006). Response to comments on "Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science, 314, 925.
- Kießling, W. (2006). Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science, 312, 897-900. https://doi.org/10.1126/science.1123591
- Aberhan, M., Kießling, W., & Fürsich, F. (2006). Testing the role of biological interactions for the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology, 32, 259-277. https://doi.org/10.1666/05028.1
- Kießling, W. (2006). Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences, 3, 15-27.
- Scasso, R.A., Concheyro, A., Kießling, W., Aberhan, M., Hecht, L., Medina, F.A., & Tagle, R. (2005). A tsunami deposit at the Cretaceous-Tertiary boundary in Argentina. Cretaceous Research, 26(2), 283-297. https://doi.org/10.1016/j.cretres.2004.12.003
- Kießling, W. (2005). Habitat effects and sampling bias on Phanerozoic reef distribution. Facies, 51, 27-35. https://doi.org/10.1007/s10347-004-0044-3
- Kießling, W. (2005). Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 433, 410-413. https://doi.org/10.1038/nature03152
- Kießling, W. (2005). Massive corals in Paleocene siliciclastic sediments of Chubut (Patagonia, Argentina). Facies, 51, 233-241.
- Kießling, W. (2004). Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014(3), 195-223. https://doi.org/10.1016/j.palaeo.2004.05.025
- Arratia, G., Scasso, R.A., & Kießling, W. (2004). Late Jurassic fishes from Longing Gap, Antarctic Peninsula. Journal of Vertebrate Paleontology, 24(1), 41-55.
- Kießling, W., Lazarus, D., & Zeller, U. (2004). Mesozoic–Cenozoic bioevents. Palaeogeography, Palaeoclimatology, Palaeoecology.
- Kießling, W. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195-225. https://doi.org/10.1080/00241160310004648
- Kießling, W. (2003). The Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology, 31(11), 961-964. https://doi.org/10.1130/G19891.1
- Kießling, W. (2002). Radiolarian diversity patterns in the latest Jurassic-earliest Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 187(1-2), 179-206. https://doi.org/10.1016/S0031-0182(02)00529-1
- Kießling, W. (2002). Radiolarian faunal characteristics in Oligocene sediments of the Kerguelen Plateau, Leg 183, Site 1138. Proceedings of the Ocean Drilling Program: Scientific Results, 183, 48pp..
- Kießling, W. (2002). Sectioning of radiolarians under continuous observation. Fossil Record, 5, 43-48.
- Kießling, W. (2001). Diagenesis of Upper Jurassic concretions from the Antarctic Peninsula. Journal of Sedimentary Research, 71(1), 88-100.
- Kießling, W. (2001). Geographie des Todes. Theatrum naturae, 1, 4-6.
- Kießling, W. (2001). Paleoclimatic significance of Phanerozoic reefs. Geology, 29, 751-754.
- Kießling, W. (2000). Late Paleozoic and Late Triassic limestones from North Palawan Block (Philippines): Microfacies and paleogeographical implications. Facies, 43, 39-78.
- Kießling, W., Scasso, R.A., Zeiss, A., Riccardi, A., & Medina, F.A. (1999). Combined radiolarian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: Implications for radiolarian stratigraphy. Geodiversitas, 21(4), 687-713.
- Kießling, W. (1999). Late Jurassic radiolarians from the Antarctic Peninsula. Micropaleontology, 45(supl. 1), 1-96.
- Kießling, W. (1999). Paleoreef Maps: Evaluation of a comprehensive database of Phanerozoic reefs. Aapg Bulletin, 84, 1552-1587.
- Kießling, W. (1996). Facies characterization of Mid-Mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies, 35, 237-274.
- Kießling, W. (1995). New radiolarians from the earliest Cretaceous of the Sultanate of Oman (Wahrah Formation, Jebel Buwaydah). Palaeontologische Zeitschrift, 69, 321-342. https://doi.org/10.1007/BF02987798
- Kießling, W. (1992). Palaeontological and facial features of the Upper Jurassic Hochstegen Marble (Tauern Window, Eastern Alps). Terra Nova, 4(2), 184-197. https://doi.org/10.1111/j.1365-3121.1992.tb00471.x
Beiträge in Sammelwerken
- Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D.Y.,... Skern-Mauritzen, M. (2022). Ocean and Coastal Ecosystems and their Services, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report. In IPCC WGII Sixth Assessment Report (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report..
- Aberhan, M., & Kießling, W. (2012). Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and processes. Global biodiversity, extinction intervals and biogeographic perturbations through time. In Talent, J.A. (Eds.), Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. (pp. 3-22). Berlin: Springer.
- Kießling, W., & Heiss, G.A. (2011). Coral Reefs. In A. Djoghlaf and F. Dodds (Eds.), Biodiversity and Ecosystem Insecurity: A planet in peril. Earthscan.
- Simpson, C., & Kießling, W. (2010). Diversity of Life through Time. In Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons.
- Kießling, W. (2010). Krisen als Chance: Lernen aus der Evolution. In K.-S. Otto and T. Speck (Eds.), Darwin meets Business. Gabler.
- Perrin, C., & Kießling, W. (2010). Latitudinal trends in Cenozoic reef patterns and their relationship to climate. Carbonate Systems during the Oligocene-Miocene climatic transition. In IAS Special Publications. (pp. 17-34).
- Kießling, W. (2008). Auf und Nieder - die wechselvolle Entwicklungsgeschichte von Riffen in der Tiefenzeit. In R. Leinfelder, G. Heiß and U. Moldrzyk (Eds.), Abgetaucht. Konradin Verlag.
- Kießling, W. (2007). Aufbruch und Untergang: Vom Werden und Vergehen des Lebens. In M. Glaubrecht, A. Kinitz and U. Moldrzyk (Eds.), Als das Leben laufen lernte. Prestel.
- Kenkmann, T., & Kießling, W. (2007). Wechselspiel der Sphären: Fein verzahnte Kreisläufe steuern das System Erde. In M. Glaubrecht, A. Kinitz and U. Moldrzyk (Eds.), Als das Leben laufen lernte. Prestel.
- Kießling, W. (2003). Reefs. In Encyclopedia of Sediments and Sedimentary Rocks. (pp. 557-560). Dordrecht: Kluwer Academic.
- Kießling, W. (2003). Riffdiversität in der Erdgeschichte - Fossilbericht und Interpretationen. In Gradstein, S. R., Willmann, R. & Zizka, G. (Eds.), Biodiversitätsforschung - Die Entschlüsselung der Artenvielfalt in Raum und Zeit. Schweizerbart.
- Flügel, E., & Kießling, W. (2002). A new look at ancient reefs. In Phanerozoic reef patterns. (pp. 3-20). Tulsa: -.
- Kießling, W. (2002). Distribution of Chicxulub ejecta at the KT boundary. Catastrophic Events and Mass Extinctions. In GSA Special Paper. (pp. 55-68).
- Kießling, W. (2002). Earliest Cretaceous high latitude reefs in Tres Lagunas (Chubut Province, Argentina). In Actas del XV Congreso Geológico Argentino. (pp. 754-759).
- Kießling, W., Flügel, E., & Golonka, J. (2002). From patterns to processes: The future of reef research. In Phanerozoic reef patterns. (pp. 735-744). Tulsa: -.
- Kießling, W. (2002). PaleoReef - a database on Phanerozoic reefs. In SEPM Special Publication. (pp. 77-94).
- Flügel, E., & Kießling, W. (2002). Patterns of Phanerozoic reef crises. In Phanerozoic reef patterns. (pp. 691-734). Tulsa: -.
- Golonka, J., & Kießling, W. (2002). Phanerozoic time scale and definition of time slices. In Phanerozoic Reef Patterns. (pp. 11-20). Tulsa: SEPM.
- Kießling, W. (2002). Secular variations in the Phanerozoic reef ecosystem. In Phanerozoic Reef Patterns. (pp. 625-690). Tulsa: SEPM.
- Kießling, W., & Claeys, P. (2001). A geographic database approach to the KT boundary. In Geological and biological effects of impact events. (pp. 83-140). Berlin: Springer.
- Kießling, W. (2001). Phanerozoic reef trends based on the Paleoreefs database. In The History and Sedimentology of Ancient Reef Systems. (pp. 41-88). NewYork: Plenum Press.
- Kießling, W., Flügel, E., & Golonka, J. (2000). Fluctuations in the carbonate production of Phanerozoic reefs. In Carbonate platform systems: components and interactions. (pp. 191-215). London: Geological Society Publishing House.
Herausgegebene Bände
- Kießling, W., Flügel, E., & Golonka, J. (Eds.) (2002). Phanerozoic Reef Patterns. Tulsa: Society for Sedimentary Geology (SEPM).
Beiträge bei Tagungen
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2021). Changes in corallite sizes of scleractinian corals across major hyperthermal events. In Proceedings of the Progressive Palaeontology 2021 - Online. University College London (UCL) - Online.
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2021). Coral community shifts across major reef crises. In Proceedings of the ICRS 2021, 14th International Coral Reef Symposium. Bremen Virtual.
- Dimitrijevic, D., Raja, N.B., & Kießling, W. (2020). Corallite sizes and their link to extinction risk of scleractinian corals across the Triassic-Jurassic boundary. Paper presentation at GSA 2020 Connects Online, Online, US.
- Raja, N.B., Lauchstedt, A., Pandolfi, J.M., Kim, S.W., Budd, A.F., & Kießling, W. (2020). Mismatches of threat status and actual extinctions in Quaternary reef corals. In Proceedings of the GSA 2020 Connects Online.
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., Haaga, K.A., & Kießling, W. (2019, December). Aragonite calcite sea effects on calcifying organisms and reefs. Paper presentation at Annual Meeting of the Palaeontological Association, Valencia, ES.
- Roden, V., Hausmann, I.M., & Kießling, W. (2019). Drivers of beta diversity in Triassic reefs and reef basins. In Proceedings of the Annual Conference of the Paläontologische Gesellschaft. Munich.
- Roden, V., Hausmann, I.M., Nützel, A., Seuß, B., Reich, M., Urlichs, M.,... Kießling, W. (2019, June). The role of liberation lagerstätten as windows into past biodiversity. Paper presentation at 11th North American Paleontological Convention, Riverside, CA, US.
- Teichert, S., Steinbauer, M., & Kießling, W. (2019). Facilitation of coral reef growth by coralline red algae – patterns during the last 150 million years. Paper presentation at macro 2019 – Bridging local patterns and global challenges, Würzburg, DE.
- Raja, N.B., & Kießling, W. (2019). Origination and dispersal dynamics of Cenozoic marine plankton. Paper presentation at Annual Meeting of the Paleontological Society (Paläontologische Gesellschaft) 2019, Munich, DE.
- Raja Schoob, N.B., & Kießling, W. (2019). Revisiting the long-term biodiversity dynamics of reef builders in a novel Bayesian framework. Paper presentation at 13th International Symposium on Fossil Cnidaria, Modena, IT.
- Seuß, B., Roden, V., Kocsis, Á., & Kießling, W. (2019). The Late Paleozoic Ice Age (LPIA) – Turnover rates during a phase of major climatic changes. In Proceedings of the Jahrestagung der Paläontologischen Gesellschaft in München. München.
- Seuß, B., Roden, V., Kocsis, Á., & Kießling, W. (2019). Turnover rates of Paleozoic and modern taxa during the Late Paleozoic Ice Age. In Proceedings of the GSA Annual Meeting. Phoenix, US.
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., & Kießling, W. (2018). A transition from Court Jester to Red Queen in the ecological success of Phanerozoic marine calcifiers. Paper presentation.
- Roden, V., Hausmann, I.M., Zuschin, M., & Kießling, W. (2018). Beta diversity in Triassic and modern marine communities. In Proceedings of the 5th International Palaeontological Congress (pp. 1014). Paris.
- Roden, V., & Kießling, W. (2018). High beta diversity in a Triassic reef basin assemblage. In School of Earth & Environment, University of Leeds (Eds.), Proceedings of the Crossing the Palaeontological- Ecological Gap (pp. 19). Leeds.
- Roden, V., Hausmann, I.M., Seuß, B., Nützel, A., & Kießling, W. (2018). High diversity in the Triassic Cassian Formation. Paper presentation at GeoBonn2018, Living Earth, Bonn.
- Roden, V., Hausmann, I.M., Nützel, A., Reich, M., & Kießling, W. (2018). Towards an assessment of true diversity in fossil ecosystems. In 1st Palaeontological Virtual Congress. Book of abstracts. Palaeontology in a virtual era (pp. 75). Valencia.
- Roden, V., & Kießling, W. (2017). Reliable estimates of beta diversity with incomplete sampling. In GSA Annual Meeting in Seattle, Washington, USA - 2017. Seattle, USA.
- Roden, V., & Kießling, W. (2017). Abundant taxa determine beta diversity. In Martin Zuschin Mathias Harzhauser Susanne Mayrhofer (Eds.), Taphos 2017 Vienna - Programme and Abstracts. Wien.
- Roden, V., & Kießling, W. (2016). A simpler method of determining beta diversity to address diversity patterns in the Cassian Formation (Triassic, Dolomites). In Fossils: Key to evolution, stratigraphy and palaeoenvironments - Programme, Abstracts, Field trip guides. Dresden.
- Kießling, W., & Eichenseer, K. (2014). The scaling law of climate change and its relevance to assessing (palaeo)biological responses. Paper presentation, Vienna, AT.
Sonstige
- Poertner, H.-O., J. Scholes, R., Agard, J., Archer, E., Arneth, A., Bai, X.,... Ngo, H. (2021). Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change.