Projekte
Vorbereitung eines EU HORIZON Projekts zu Lagerstätten kritischer Metalle
(Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)Laufzeit: 1. November 2023 - 30. November 2024
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)IVAC – International Virtual Academic Collaboration 2021-2022 DAAD International online course "Ethical Global Partnerships and Sustainable Resources"
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Oktober 2021 - 30. September 2022
Mittelgeber: Deutscher Akademischer Austauschdienst (DAAD)P13 – Modelling of the development of deformation bands in porous rocks and their influence on the permeability evolution of reservoirs
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)Titel des Gesamtprojektes: GRK 2423 FRASCAL: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
Laufzeit: 1. April 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)An extended DEM approach with multi-scale aggregates and healing algorithms will be used to study structures on the grain and single-band scale, whereas the reservoir scale flow properties will be determined with continuum models. Codes will be developed and tested simultaneously and natural examples from our rock collection and field examples can be used in the other projects. We will then develop an algorithm for the healing of fractured grains and will finally approach the large scale and look at the influence of deformation bands on the permeability of aquifers. Here we will vary mechanical content in bands, deformation conditions from shear to compaction, compactional and extensional shear, and finite strain.
Nano-Analytik von natürlichen Quarz-Deformationsmikrostrukturen am spröd-viskosen Übergang
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Juni 2018 - 31. Mai 2021
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Um Scherlokalisationen in der Kruste zu verstehen, ist es entscheidend, die Wechselwirkung von spröd-duktilen Deformationsmechanismen im Kornmaßstab in Myloniten zu erfassen.
Hierbei haben vor allem synkinematische Bruchbildung und duktile Prozesse einen starken Einfluss auf die räumliche Ausbreitung und Geschwindigkeit des Fluidtransfers unterhalb der seismogenen Kruste und auf den seismischen Zyklus selbst. Hauptziel dieses Projektes ist es daher Informationen über die Entstehung von diskreten Rekristallisationszonen (DRZ) in Quarz als potentielle Indikatoren für Mikrobruchbildung während der initialen Phase der Mylonitisierung zu erlangen. Diese DZR sollen an einer Quarzader von der Schobergruppe (Hohe Tauern, Zentrale Ostalpen), welche bei 450-500°C deformiert worden ist, untersucht werden. Generell soll das Projekt zum Verständnis der mikrostrukturellen Entwicklung von diskreten Rekristallisationszonen bis zu Ultramyloniten beitragen. Im Fokus steht dabei das Verständnis der Interaktion verschiedener Deformationsmechanismen (Mikro-Bruchbildung, Subkornrotation- und Korngrenzmigrationsrekristallisation, mechanische Dauphiné Verzwilligung, Lösungs-Fällungsrekristallisation, Korngrenzgleitung) während der initialen und der progressiven Verformung. Ohne die Kombination von verschiedenen modernen mikrostrukturellen und geochemischen (Spurenelement) Analysetechniken ist eine Interpretation der erwähnten spezifischen Quarz-Deformationsmikrostrukturen nicht möglich und bleibt rein spekulativ. Folgende Mikro- und Nano-Analytik ist in dem Projekt vorgesehen um die feinkörnigen Mikrostrukturen zu untersuchen: Elektronen-Rückstreu-Beugung (EBSD), REM Orientierungskontrast (channeling contrast), REM Kathodolumineszenz (CL), Transmissionselektronenmikroskopie (TEM), Sekundärionen-Massenspektrometrie (SIMS und nanoSIMS) für Ti-in-Quarz Analysen und Atomsonden Analysen mit atomarer Auflösung um Informationen über (Sub)Korn-Diffusionsprozesse (v.a. von Ti) während der Deformation zu bekommen. Des Weiteren soll mittels eines neu entwickelten Nah-Feld nanoFTIR Mikroskops getestet werden, inwieweit intragranulares Wasser in Quarz im Nano- bis Mikrometer Maßstab gemessen werden kann. Zusätzlich ist geplant, Wasser in Quarz (OH- Ionen) Analysen mittels nanoSIMS durchzuführen. Wenn diese voneinander unabhängigen Methoden funktionieren, dann würd dies eine neue Dimension erschließen, um den Wassergehalt in feinkörnigen Mineralen (nicht nur Quarz) als auch in Subkorngrenzen, Korngrenzen oder sogar entlang von Versetzungen zu messen. Die Kombination von Atomsonden Ti-Verteilungsdaten und nanoFTIR Wassergehalt Analysen könnte dazu beitragen, deformationsbedingte pipe diffusion bzw. Wegsamkeiten entlang von Subkorngrenzen nachzuweisen. Diese Daten sind u.a. wichtig, um die Neueinstellung des Ti-in-Quarz Systems im Verlauf der dynamischen Rekristallisation zu verstehen.
Störungsflächenanalyse an Bohrkern- und Aufschlussdaten, Gebiet Obernsees, Fränkisches Becken und in situ-Spannungsanalyse (RACOS® Methode)
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Februar 2018 - 31. Dezember 2019
Mittelgeber: andere FörderorganisationIm Rahmen von Untersuchungen zur Struktur des Untergrundes im Zielgebiet des GAB-Forschungsprojektes „Petrotherm“ wurden neben den schon bekannten NW-SE verlaufenden Störungen im Fränkischen Becken auch N-S verlaufende Störungen als bedeutende Lineamente beschrieben. Die Kinematik dieser Strukturen im Paläo- und im in situ Spannungsfeld und damit ihr Reaktivierungspotential sind bislang nicht ausreichend untersucht. In diesem Kurzprojekt (12 Monate) soll eine detaillierte Datenerhebung zum Störungs- und Kluftsystem in einem kleinräumigen Gebiet um die Bohrung Obernsees durchgeführt werden, um das strukturelle Inventar zu erfassen. Mittels der RACOS®-Methode soll an einem Bohrkern aus der Bohrung Obernsees eine Bestimmung der herrschenden in situ-Spannungen durchgeführt werden.
Diese Methodenkombination wurde im Projekt „Petrotherm“ bislang nicht angewendet, wären aber für eine Bewertung des Reaktivierungspotentials von Störungsflächen im Fränkischen Becken und seines Untergrundes von Bedeutung. Mit diesem Kurzprojekt soll daher die Machbarkeit und Nützlichkeit für die Thematik „Ermittlung von Spannungszuständen im Zielgebiet und das Bruchverhaltens ausgewählter Gesteinstypen“ des Gesamtprojektes getestet und die Datenbasis zu dieser Thematik verdichtet werden.
Die tektonomagmatische Entwicklungsgeschichte des Sindreth Beckens im Ostteil der Malani Igneous Province und Implikationen für die Neoproterozische (Cryogenian) geodynamische Entwicklungsgeschichte von NW-Indien
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Januar 2015 - 1. August 2017
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Die Malani Igneous Suite (MIS) in NW-Indien (770 bis 750 Ma) ist mit einer räumlichen Verbreitung von mehr als 50.000 km2 eine der größten felsischen magmatischen Provinzen weltweit. Die Entstehung wird in Zusammenhang mit dem Aufbrechen des Rodinia Superkontinentes und der nachfolgenden Kontinentaldrift zur Bildung von Gondwana gesehen. Es wurden verschiedene Modelle (plume, rift, subduction, mantle delamination) vorgeschlagen, die aber bislang noch undiskutiert nebeneinander stehen, da entsprechende Basisdaten fehlen. Zeitgleich zum MIS sind im Ostteil des Verbreitungsgebietes der MIS kleine langgestreckte Becken (Sindreth, Punagarth) entstanden, wie durch Alter von 765 Ma an synsedimentären Vulkaniten dieser Becken belegt wird. Die genaue zeitliche Einordnung zum Hauptpuls der MIS kann jedoch durch geochronologische Arbeiten nicht aufgelöst werden. Diese Becken haben eine Bedeutung in der geodynamischen Rekonstruktion von NW-Indian, da ihre Bildung in neueren Arbeiten im Zusammenhang mit einer aktiven Subduktionszone in diesem Gebiet gesehen wird. Erste Feldbegehungen unserer Arbeitsgruppe haben jedoch Anhaltspunkte gefunden, die dieser Interpretation entgegenstehen. Eine erste Bearbeitung im Frühjahr/Sommer 2014 hat gezeigt, dass die grobklastische Füllung des Sindreth Becken auf ein kontinentales Liefergebiet schließen lässt und die Interpretation einer Ozeanbodenstratigraphie durch die geologischen Belege nicht gestützt ist. Wir gehen von einer störungsgebundenen Beckenarchitektur aus, mit Abtrag des nahegelegenen Grundgebirges (Metasedimente und Granite). Die Sedimentation wird von bimodalen Vulkaniten unterbrochen, im oberen Teil der Sequenz finden sind klastische Sedimente und felsische Tuffe, die z.T. als Seeablagerungen identifiziert werden konnten. Die gesamte Sequenz ist nicht metamorph und zeigt generell ein mittelsteiles Einfallen nach W. Erste Labormessungen (magnetische Gefüge) geben Hinweise auf eine Intrusion von Rhyoliten in die schon verstellten Sedimente. In einer weiteren Geländekampagne im Frühjahr 2015 wollen wir die lithologische Aufnahme durch eine genauere strukturelle Aufnahme ergänzen und Proben für gesteinsmagnetische Untersuchungen nehmen, um die Beziehung zwischen struktureller Entwicklung und der magmatischen MIS Aktivität herauszuarbeiten. Durch Auswertung von Satellitenbildern sollen die Ergebnisse aus dem Sindreth Becken in einen größeren Kontext gestellt werden. Das Sindreth Becken und seine durch markante Bruchstrukturen gekennzeichnete Umgebung bildet den übergang zwischen der undeformierten MIS im W und dem durch duktile Deformation, Anatexis und Scherdeformation geprägtem Mt.Abu-Sirohi Gebiet im E, welches in den letzten Jahren Ziel der Untersuchungen unserer Arbeitsgruppe war. Die globale Signifikanz dieses Gebietes ergibt sich aus der zeitlichen Einstufung der tektonomagmatischen Prozesse (Cryogenian) und Korrelation mit magmatischen Gürteln und Deformationsereignissen in Madagaskar und S-Indien.Bestimmung der Umgebungsbedingungen während coseismischer Deformation mittels Ti-in-Quarz Thermometrie und Ar-Ar Datierung von Pseudotachylyten
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Februar 2011 - 31. Januar 2012
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Despite a wealth of data about seismic fault zones there is an ongoing discussion about the possibility of frictional melting of quartzitic rocks. In the present study we analysed fault vein bearing fault zones within quartzitic rocks within the Schneeberg Normal Fault Zone (SNFZ), Southern Tirol, Italy. Electron microscopy (scanning electron microscopy, SEM, including electron back scatter diffraction, EBSD, and cathodoluminescence, CL, analysis in combination with transmission electron microscopy, TEM) analyses revealed that the fault veins (0.5-2 mm thick) are not ultracataclastic zones as presumed initially (see original title of the project WA 1010/11-1). Instead an extensive melting and subsequent quenching of quartz is evident. These quenched friction-induced melts along a fault during seismic slips are so-called tectonic pseudotachylytes and record paleo-earthquakes. Pseudotachylytes are typically considered to be representative for the brittle upper crust and in association with cataclasites. However the Schneeberg NFZ quartzites show clear evidence of crystal plasticity and dynamic recrystallization resulting in ultrafine-grained (1-2 µm) aggregates along microshear zones (50-150 µm thick) in the host rock adjacent to pseudotachylyte veins. Ar-Ar dating of the Schneeberg NFZ pseudotachylyte reveal an age of 60-66 Ma and indicates that the coseismic event is younger than the greenschist facies metamorphism of the Schneeberg NFZ (76 Ma, exiting data from the literature). Thus pseudotachylyte formation should has occurred after exhumation of the Schneeberg NFZ into the brittle crust under far field ambient temperatures conditions <250-300 °C. The occurrence of such fine recrystallized quartz was also reported in other pseudotachylytes-bearing faults, but these microstructures have been overlooked in most works on pseudotachylytes (also considering that they are hardly visible with standard optical methods) and a detailed electron microscopy study including crystallographic preferred orientation analysis of the microstructure was missing. In this project we carried out a direct comparison between the deformation microfabrics of quartz in two different pseudotachylyte-bearing faults both showing the development of ultrafine-grained recrystallization aggregates: the Schneeberg NFZ quartzite and the Adamello Gole Larghe Fault Zone(GLFZ) tonalite (Southern Alps). The observations of this study suggest that the association of ultrafine recrystallization and frictional melting is a systematic feature of most pseudotachylyte-bearing faults and could yield a more complete information on the mechanics of coseismic slip. Based on thermal models we suggest that crystal plastic deformation of quartz accompanied by dramatic grain size refinement by dynamic recrystallization occurs during seismic faulting at the base of the brittle crust as a result of the high temperature transients (> 800°C) related to frictional heating in the host rock selvages of the slip surface. These localised high deformation temperatures made possible that the process of dynamic recrystallization, including recovery processes, could occur in a time lapse of a few tens of seconds.
In order to verify these modeled quartz deformation temperatures we applied the Ti-in-quartz geothermometer by measuring the Ti content in quartz by nanoSIMS. The geochemical analysis for both pseudotachylyte-bearing samples (Schneeberg NFZ and Adamello GFZL) showed that during the seismic-related development of ultrafine-grained dynamic recrystallized quartz aggregates the pre-seismic host Ti signal is inherited. Therefore no temperature related resetting of the Ti content occurs during seismically-induced quartz recrystallization. However the steep increase of Ti in quartz in the direct vicinity (1-2 µm) of melt-related submicron-sized Ti-bearing particles gives evidence of Ti diffusion and points to short-timed high temperature transient, which is consistent with the thermal modelling of pseudotachylyte vein and its host rock margin.
Charakterisierung von Mikrostrukturen in ultrakataklastischen Zonen von Quartziten mittels Elektronenmikroskopie
(Drittmittelfinanzierte Einzelförderung)Laufzeit: 1. Juni 2006 - 31. Juli 2009
Mittelgeber: Deutsche Forschungsgemeinschaft (DFG)