• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
GeoZentrum Nordbayern
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Geographie und Geowissenschaften
Suche öffnen
  • English
  • GZN#Instagram
  • #Facebook
  • #Youtube
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Geographie und Geowissenschaften

GeoZentrum Nordbayern

Menu Menu schließen
  • Studieninteressierte
    • Bewerbung und Einschreibung
    • Berufswege nach dem Studium
    • Darum lohnt sich ein Studium am GeoZentrum Nordbayern!
    Studieninteressierte
  • Studium
    • Studienbeginn
    • Bachelor am GeoZentrum
    • Master am GeoZentrum
    • Geowissenschaften im Nebenfach
    • Anerkennung von Studienleistungen
    • Studieren im Ausland
    • FSI Geowissenschaften e.V.
    • Karrieremöglichkeiten
    • Prüfungsordnungen, Downloads und Evaluation
    • Kontakt
    Studium
  • Forschung
    • Arbeitsgruppen
    • Ausstattung
    • Forschungsprojekte
    • Publikationen
    • Schwerpunkt Naturwissenschaftliche Fakultät
    Forschung
  • Datenbanken und Software
    • Datenbanken
    • Software
    • Software Extension
    Datenbanken und Software
  • Gäste und Schulen
  • GeoZentrum
    • Organisation
    • Lageplan
    • Mitarbeitende
    • Intranet
    GeoZentrum

GeoZentrum Nordbayern

  1. Startseite
  2. StrucTec@GZN
  3. Team
  4. Prof. Dr. Daniel Köhn

Prof. Dr. Daniel Köhn

Bereichsnavigation: StrucTec@GZN
  • Forschung
  • Team
    • Prof. Dr. Daniel Köhn
    • Dr. Eric Salomon
    • Dr. Jürgen Lang
    • Dr. Rahul Prabhakaran
    • Dr. Sofia-Katerina Kufner
    • Bakul Mathur, M. Sc.
    • Daniel Hafermaas, M. Sc.
    • Ehsan Ahmadi Olyaei, M. Sc.
    • Javad Karimi, M. Sc.
    • Ruaridh Smith, M. Sc.
  • Ausstattung
  • Lehre und Kurse
  • Outreach
  • Publikationen
  • Projekte
  • Kontakt

Prof. Dr. Daniel Köhn

Bild von Daniel Koehn

Prof. Dr. Daniel Köhn

Professur für Tektonik

Adresse

Schlossgarten 591054 Erlangen
Zimmer: Büro Prof. Dr. Daniel Koehn, Geschoss: 02

Kontakt

  • E-Mail: daniel.koehn@fau.de

  • Ore mineralisation and fluid fluxes in orogenic foreland basins


    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Understanding the formation, movement, and host-rock interaction of upper crustal aqueous fluids on Earth, from rock grain to tectonic plate scale
    Laufzeit: seit 1. Juli 2025
    Mittelgeber: Innovative Training Networks (ITN)
    URL: https://formovfluid.eu/
    Abstract
    This project aims to investigate the physicochemical controls on MVT ore formation in foreland basins by integrating petrological and geochemical datasets with advanced thermodynamic reaction-transport models. The geochemical modeling will provide a basis for quantifying fluid fluxes in and out of ore deposits, enabling an assessment of CO₂ entrapment during ore formation and associated secondary mineral precipitation. Targeted field sites include world-class Zn-Pb MVT deposits in the Aquitaine Basin (Southern France) and the Ebro Foreland Basin (Northwest Spain). Petrological data (e.g., alteration mineralogy and extent of alteration zones) and geochemical data (e.g., chemical and isotopic composition of alteration minerals and vein-filling material) will be integrated into multi-dimensional (1D, 2D, and 3D) reaction-transport models using software such as GEMS, PhreeqC, PHAST, and TOUGHREACT. This integration of natural datasets with modeling calculations will elucidate the chemical processes driving ore formation and characterize the physicochemical properties of ore-forming fluids. Furthermore, combining steady-state (equilibrium) reaction-transport models with multi-dimensional (kinetic) reaction-transport and flow models will enable an investigation of key controls—such as host rock composition, fluid evolution, permeability, temperature, and pressure—on ore formation along fluid flow paths. This approach will also facilitate the estimation of fluid entrapment and release fluxes in MVT deposits.

    →Mehr Informationen
  • Fluid origin and transport in the upper crust – episodic vs. continuous fluid flow along fracture networks


    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Understanding the formation, movement, and host-rock interaction of upper crustal aqueous fluids on Earth, from rock grain to tectonic plate scale
    Laufzeit: seit 1. Juli 2025
    Mittelgeber: Innovative Training Networks (ITN)
    Abstract
    The project aims to analyze the chemical and isotopic composition of vein-filling materials and alteration halos along former fluid pathways to determine fluid origins in foreland basins and investigate element transport mechanisms within flow networks and adjacent host rocks. Advanced analytical tools, including LA-ICP-MS/MS and SIMS, will be employed. Targeted field sites include Great Cumbrae island near the Highland Boundary Fault in the Southern Scottish Highlands and the northern Variscan Front in Belgium, where complex fluid networks with distinctive reaction halos are exposed in sedimentary rocks. The extent of reaction fronts and halos tapering former fluid pathways at these sites will be analyzed to constrain fluid flow rates and determine whether fluid expulsion into foreland basins occurs as continuous flow or in rapid pulses. To achieve this, 1D and 2D transport equations will be developed to model fluid advection along a single fracture and transverse diffusion outward from the fracture. These models will enable calculations of time-averaged fluid velocities and the duration of fluid flow along brittle fractures.
    →Mehr Informationen
  • Fluid flow scales: the time and spatial scales of metamorphic fluid events


    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Understanding the formation, movement, and host-rock interaction of upper crustal aqueous fluids on Earth, from rock grain to tectonic plate scale
    Laufzeit: seit 1. Juli 2025
    Mittelgeber: Innovative Training Networks (ITN)
    Abstract
    This project targets to re-examine metabasaltic sills in the SW Scottish Highlands to identify reaction fronts formed dominantly through matter diffusion from adjacent metapelites. These reaction fronts will be used to delineate the true extent of metamorphic fluid penetration and to calculate time-integrated and time-averaged fluid fluxes. Additionally, reaction textures in mineralogically and chemically zoned metabasaltic sills will be analyzed to elucidate mineral dissolution and precipitation processes. These processes may have enriched or depleted metamorphic fluids in elements of economic significance, particularly those associated with orogenic ore deposits (e.g., gold (Au) deposits). This project aims to evaluate the roles of anisotropies and brittle-ductile processes in controlling the spatial extent and volume of metamorphic fluid flow. Multi-dimensional advective and diffusive flow models will be developed to investigate the mechanisms of reaction front formation and propagation, providing constraints on the timescales of metamorphic fluid events. The findings will offer new insights into the spatial and temporal dynamics of metamorphic fluid flow during orogenesis. Additionally, deciphering fluid-rock interactions in these systems will advance our understanding of metal enrichment processes in fluids associated with metamorphism.

    →Mehr Informationen
  • Understanding the formation, movement, and host-rock interaction of upper crustal aqueous fluids on Earth, from rock grain to tectonic plate scale


    (Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
    Laufzeit: seit 1. Januar 2025
    Mittelgeber: Innovative Training Networks (ITN)
    URL: https://formovfluid.eu/
    Abstract
    Fluids play a critical role in the evolution and chemical modification of the Earth’s crust. They control heat and mass transfer, mineral reactions, and deformation processes. The movement and physio/chemical interaction of aqueous geofluids with rocks in the Earth’s upper crust is thereby fundamental for critical raw material mineralisation and the formation of geothermal fluid flow systems. With the rapidly increasing global demand for raw materials, the EU faces significant challenges regarding its dependencies on access to raw materials. Fluid movement in the upper crust is, by its nature, controlled by an interaction of physical and chemical processes that can operate from the tectonic plate to the microscopic ‘rock grain’ scales. Fully understanding these complex systems inherently requires a multidisciplinary/multiscale approach using cutting edge structural geology, mineralogy/petrology, geochemical and geophysical tools. ForMovFluid proposes to adopt new and existing laboratory and field techniques in these geoscience subdisciplines to address key knowledge gaps related to fluid flow drivers, pathways, and fluid/rock reactions. In doing so, the objective of ForMovFluid is to train 15 doctoral researchers in cutting edge geoscience field and laboratory techniques and broader professional skills to develop future leaders in the field. This will contribute significantly to addressing the climate emergency by developing novel solutions for the energy transition that hinges on enhanced access to hydrothermal-hosted critical metal deposits, as highlighted in the EU Critical Raw Materials Act. The aims of ForMovFluid are to further our understanding of the movement and physio/chemical interaction of aqueous fluids with rocks in a variety of tectonic settings in the Earth’s upper crust, and to establish a long-term pan-sector research network that will go on to contribute to European geofluid research and to underpin Europe’s raw material and geothermal sectors.
    →Mehr Informationen
  • Vorbereitung eines EU HORIZON Projekts zu Lagerstätten kritischer Metalle


    (Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
    Laufzeit: 1. November 2023 - 30. November 2024
    Mittelgeber: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
    →Mehr Informationen
  • Action for Research and Teaching Mining exploration Inclusive School


    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Action for Research and Teaching Mining exploration Inclusive School
    Laufzeit: 1. November 2021 - 31. Oktober 2024
    Mittelgeber: Europäische Union (EU)
    →Mehr Informationen
  • IVAC – International Virtual Academic Collaboration 2021-2022 DAAD International online course "Ethical Global Partnerships and Sustainable Resources"


    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Oktober 2021 - 30. September 2022
    Mittelgeber: Deutscher Akademischer Austauschdienst (DAAD)
    →Mehr Informationen
  • P13 – Modelling of the development of deformation bands in porous rocks and their influence on the permeability evolution of reservoirs


    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: GRK 2423 FRASCAL: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
    Laufzeit: 1. April 2019 - 31. Dezember 2027
    Mittelgeber: DFG / Graduiertenkolleg (GRK)
    Abstract
    An extended DEM approach with multi-scale aggregates and healing algorithms will be used to study structures on the grain and single-band scale, whereas the reservoir scale flow properties will be determined with continuum models. Codes will be developed and tested simultaneously and natural examples from our rock collection and field examples can be used in the other projects. We will then develop an algorithm for the healing of fractured grains and will finally approach the large scale and look at the influence of deformation bands on the permeability of aquifers. Here we will vary mechanical content in bands, deformation conditions from shear to compaction, compactional and extensional shear, and finite strain.
    →Mehr Informationen


Beiträge in Fachzeitschriften

  • Wiest, J., Köhler, S., Köhn, D., Stollhofen, H., Dengler, K., & Fazlikhani, H. (2025). A novel multi-scale approach to fault network analysis and visualization: test case Franconian Platform (SE Germany). Journal of Structural Geology, 199. https://doi.org/10.1016/j.jsg.2025.105481
  • Hafermaas, D., Köhler, S., Köhn, D., & Toussaint, R. (2025). Dynamic System Roughening from Mineral to Tectonic Plate Scale: Similarities Between Stylolites and Mid-Ocean Ridges. Minerals, 15(7). https://doi.org/10.3390/min15070743
  • Soukis, K., Kanellopoulos, C., Voudouris, P., Mavrogonatos, C., Lazos, I., Sboras, S.,... Moritz, R. (2025). Investigating the Structure of Detachment Faulting and Its Role in Ore Formation: The Kallintiri Detachment System and the Associated Polymetallic Ore Deposit (Rhodope, NE Greece). Geosciences, 15(2). https://doi.org/10.3390/geosciences15020046
  • Beaudoin, N.E., Köhn, D., Aharonov, E., Billi, A., Daeron, M., & Boyce, A. (2025). Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge. Minerals, 15(1). https://doi.org/10.3390/min15010073
  • Kelka, U., Beaudoin, N.E., Lorenz, J., Köhn, D., Regenauer-Lieb, K., Boyce, A., & Chung, P. (2023). Zebra dolomites of the Spessart, Germany: implications for hydrothermal systems of the European Zechstein Basin. International Journal of Earth Sciences, 112(8), 2293-2311. https://doi.org/10.1007/s00531-023-02346-x
  • Mathur, B., Prabhakaran, R., & Köhn, D. (2023). Evolving geometries, topologies, and apertures in fracture networks: Quantitative insights from lattice modeling. Forces in Mechanics, 12. https://doi.org/10.1016/j.finmec.2023.100197
  • Wu, J., Fan, T., Gomez-Rivas, E., Cao, Q., Travé, A., Gao, Z.,... Bons, P.D. (2023). Relationship between stylolite morphology and the sealing potential of stylolite-bearing carbonate cap rocks. Geological Society of America Bulletin, 135(3-4), 689-711. https://doi.org/10.1130/B36297.1
  • Bons, P.D., Cao, D., De Riese, T., Gonzalez-Esvertit, E., Köhn, D., Naaman, I.,... Gomez-Rivas, E. (2022). A review of natural hydrofractures in rocks. Geological Magazine. https://doi.org/10.1017/S0016756822001042
  • Köhn, D., Kelka, U., Toussaint, R., Siegel, C., Mullen, G., Boyce, A., & Piazolo, S. (2022). Outcrop scale mixing enhanced by permeability variations: the role of stationary and travelling waves of high saturation indices. Geological Magazine. https://doi.org/10.1017/S001675682200070X
  • Köhler, S., Duschl, F., Fazlikhani, H., Köhn, D., Stephan, T., & Stollhofen, H. (2022). Reconstruction of cyclic Mesozoic-Cenozoic stress development in SE Germany using fault-slip and stylolite inversion. Geological Magazine. https://doi.org/10.1017/S0016756822000656
  • Köhn, D., Köhler, S., Toussaint, R., Ghani, I., & Stollhofen, H. (2022). Scaling analysis, correlation length and compaction estimates of natural and simulated stylolites. Journal of Structural Geology, 161. https://doi.org/10.1016/j.jsg.2022.104670
  • Molli, G., Köhn, D., Allacorta, L., Danese, L., Zampelli, S., & Zazzeri, M. (2022). Superimposed structures, incremental strain and deformation path from field data to modelling: A case study from the Alpi Apuane metamorphic core complex (NW Tuscany, Italy). Journal of Structural Geology, 161. https://doi.org/10.1016/j.jsg.2022.104676
  • Centrella, S., Beaudoin, N.E., Köhn, D., Motte, G., Hoareau, G., & Callot, J.P. (2022). How fluid-mediated rock transformations can mimic hydro-fracturing patterns in hydrothermal dolomite. Marine and Petroleum Geology, 140. https://doi.org/10.1016/j.marpetgeo.2022.105657
  • Smith, R., Lesueur, M., Kelka, U., Poulet, T., & Köhn, D. (2022). Using fractured outcrops to calculate permeability tensors: implications for geothermal fluid flow and the influence of seismic-scale faults. Geological Magazine. https://doi.org/10.1017/S0016756822000309
  • Gomez-Rivas, E., Martin-Martin, J.D., Bons, P.D., Köhn, D., Griera, A., Trave, A.,... Neilson, J. (2022). Stylolites and stylolite networks as primary controls on the geometry and distribution of carbonate diagenetic alterations. Marine and Petroleum Geology, 136. https://doi.org/10.1016/j.marpetgeo.2021.105444
  • Köhn, D., Piazolo, S., Beaudoin, N.E., Kelka, U., Spruženiece, L., Putnis, C.V., & Toussaint, R. (2021). Relative rates of fluid advection, elemental diffusion and replacement govern reaction front patterns. Earth and Planetary Science Letters, 565. https://doi.org/10.1016/j.epsl.2021.116950
  • Jess, S., Köhn, D., Fox, M., Enkelmann, E., Sachau, T., & Aanyu, K. (2020). Paleogene initiation of the Western Branch of the East African Rift: The uplift history of the Rwenzori Mountains, Western Uganda. Earth and Planetary Science Letters, 552. https://doi.org/10.1016/j.epsl.2020.116593
  • Beaudoin, N.E., Labeur, A., Lacombe, O., Köhn, D., Billi, A., Hoareau, G.,... Callot, J.-P. (2020). Regional-scale paleofluid system across the Tuscan Nappe-Umbria-Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite-vein networks. Solid Earth, 11(4), 1617-1641. https://doi.org/10.5194/se-11-1617-2020
  • Beaudoin, N., Lacombe, O., Köhn, D., David, M.E., Farrell, N., & Healy, D. (2020). Vertical stress history and paleoburial in foreland basins unravelled by stylolite roughness paleopiezometry: Insights from bedding-parallel stylolites in the Bighorn Basin, Wyoming, USA. Journal of Structural Geology, 136. https://doi.org/10.1016/j.jsg.2020.104061
  • Köhn, D., Piazolo, S., Sachau, T., & Toussaint, R. (2020). Fracturing and Porosity Channeling in Fluid Overpressure Zones in the Shallow Earth's Crust. Geofluids, 2020. https://doi.org/10.1155/2020/7621759
  • Beaudoin, N., Lacombe, O., David, M.-E., & Köhn, D. (2020). Does stress transmission in forelands depend on structural style? Distinctive stress magnitudes during Sevier thin-skinned and Laramide thick-skinned layer-parallel shortening in the Bighorn Basin (USA) revealed by stylolite and calcite twinning paleopiezometry. Terra Nova. https://doi.org/10.1111/ter.12451
  • Aleksans, J., Köhn, D., Toussaint, R., & Daniel, G. (2019). Simulating Hydraulic Fracturing: Failure in Soft Versus Hard Rocks. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02376-0
  • Beaudoin, N., Lacombe, O., Roberts, N.M., & Köhn, D. (2019). U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology, 47(9), e481-e481. https://doi.org/10.1130/G46606Y.1

Weitere Hinweise zum Webauftritt

GZN auf Instagram

GeoZentrum live!

LInk zum Geofilm

GZN aktiv!

Friedrich-Alexander-Universität
GeoZentrum Nordbayern

Schlossgarten 5
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • Instagram
  • Youtube
Nach oben